Projectively Flat Finsler Metrics of Constant Curvature

نویسنده

  • Zhongmin Shen
چکیده

It is the Hilbert’s Fourth Problem to characterize the (not-necessarilyreversible) distance functions on a bounded convex domain in R such that straight lines are shortest paths. Distance functions induced by a Finsler metric are regarded as smooth ones. Finsler metrics with straight geodesics said to be projective. It is known that the flag curvature of any projective Finsler metric is a scalar function of tangent vectors (the flag curvature must be a constant if it is Riemannian). In this paper, we study the Hilbert Fourth Problem in the smooth case. We give a formula for x-analytic projective Finsler metrics with constant curvature using a power series with coefficients expressed in terms of F (0, y) and Fxk (0, y)y . We also give a formula for general projective Finsler metrics with constant curvature using some algebraic equations depending on F (0, y) and F xk(0, y)y . By these formulas, we obtain several interesting projective Finsler metrics of constant curvature which can be used as models in certain problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finsler Metrics with K = 0 and S = 0

In Finsler geometry, there are infinitely many models of constant curvature. The Funk metrics, the Hilbert-Klein metrics and the Bryant metrics are projectively flat with non-zero constant curvature. A recent example constructed by the author is projectively flat with zero curvature. In this paper, we introduce a technique to construct non-projectively flat Finsler metrics with zero curvature i...

متن کامل

On a class of locally projectively flat Finsler metrics

‎In this paper we study Finsler metrics with orthogonal invariance‎. ‎We‎ ‎find a partial differential equation equivalent to these metrics being locally projectively flat‎. ‎Some applications are given‎. ‎In particular‎, ‎we give an explicit construction of a new locally projectively flat Finsler metric of vanishing flag curvature which differs from the Finsler metric given by Berwald in 1929.

متن کامل

Funk Metrics and R-Flat Sprays ∗

The well-known Funk metric F (x, y) is projectively flat with constant flag curvature K = −1/4 and the Hilbert metric Fh(x, y) := (F (x, y) + F (x,−y))/2 is projectively flat with constant curvature K = −1. These metrics are the special solutions to Hilbert’s Fourth Problem. In this paper, we construct a non-trivial R-flat spray using the Funk metric. It is then an inverse problem in the calcul...

متن کامل

Two-Dimensional Finsler Metrics with Constant Curvature

We construct infinitely many two-dimensional Finsler metrics on S 2 and D 2 with non-zero constant flag curvature. They are all not locally projectively flat.

متن کامل

Randers Metrics of Scalar Flag Curvature

We study an important class of Finsler metrics — Randers metrics. We classify Randers metrics of scalar flag curvature whose S-curvatures are isotropic. This class of Randers metrics contains all projectively flat Randers metrics with isotropic S-curvature and Randers metrics of constant flag curvature.

متن کامل

On 5-dimensional 2-step homogeneous randers nilmanifolds of Douglas type

‎In this paper we first obtain the non-Riemannian Randers metrics of Douglas type on two-step homogeneous nilmanifolds of dimension five‎. ‎Then we explicitly give the flag curvature formulae and the $S$-curvature formulae for the Randers metrics of Douglas type on these spaces‎. ‎Moreover‎, ‎we prove that the only simply connected five-dimensional two-step homogeneous Randers nilmanifolds of D...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008